THE CROSSROADS: Drug Development, Biomarkers, and Colorectal Cancer

#### SANJAY GOEL, M.D., M.S.

PROFESSOR OF MEDICINE ALBERT EINSTEIN COLLEGE OF MEDICINE MONTEFIORE MEDICAL CENTER DEPT. OF ONCOLOGY JUN 22, 2018

# **Objectives:**

After attending this activity, participants will be able to:

- Appreciate the role that genetics plays in the therapy and pathogenesis of colorectal cancer including the latest therapy option
- Understand the concept of drug development in oncology, with a special emphasis on colorectal cancer
- Develop a basic understanding on screening, diagnosis, and management of colorectal cancer

#### Estimated New Cancer Cases\* in the US in 2018



140,250

\*Excludes basal cell and squamous cell skin cancers and in situ carcinoma except urinary bladder.

#### Estimated Cancer Deaths in the US in 2018

|                                   |     | Males<br>323,630        | Females<br>286,010 |     | 50,050                            |
|-----------------------------------|-----|-------------------------|--------------------|-----|-----------------------------------|
| Lung & bronchus                   | 26% |                         |                    | 25% | Lung & bronchus                   |
| Prostate                          | 9%  | (2 <mark>7,39</mark> 0) |                    | 14% | Breast                            |
| Colon & rectum                    | 8%  |                         | (23,240)           | 8%  | Colon & rectum                    |
| Pancreas                          | 7%  |                         |                    | 7%  | Pancreas                          |
| Liver & intrahepatic<br>bile duct | 6%  |                         |                    | 5%  | Ovary                             |
| Leukemia                          | 4%  |                         |                    | 4%  | Uterine corpus                    |
| Esophagus                         | 4%  |                         |                    | 4%  | Leukemia                          |
| Urinary bladder                   | 4%  |                         |                    | 3%  | Liver & intrahepatic<br>bile duct |
| Non-Hodgkin<br>Ivmphoma           | 4%  |                         |                    | 3%  | Non-Hodgkin lymphoma              |
| Kidney & renal pelvis             | 3%  |                         |                    | 3%  | Brain & other nervous<br>system   |
| All other sites                   | 24% |                         |                    | 24% | All other sites                   |

EU 630

#### Trends in Five-year Relative Survival Rates (%), 1975-2013

| Site                 | 1975-1977 | 1987-1989 | 2007-2013 |
|----------------------|-----------|-----------|-----------|
| All sites            | 49        | 55        | 69        |
| Breast (female)      | 75        | 84        | 91        |
| Colorectum           | 50        | 60        | 66        |
| Leukemia             | 34        | 43        | 64        |
| Lung & bronchus      | 12        | 13        | 20        |
| Melanoma of the skin | 82        | 88        | 94        |
| Non-Hodgkin lymphoma | 47        | 51        | 73        |
| Ovary                | 36        | 38        | 47        |
| Pancreas             | 3         | 4         | 9         |
| Prostate             | 68        | 83        | 99        |
| Urinary bladder      | 72        | 79        | 78        |

5-year relative survival rates based on patients diagnosed in the 9 oldest SEER registries from 1975-1977, 1987-1989, and 2007-2013, all followed through 2014. Source: Surveillance, Epidemiology, and End Results (SEER) Program, National Cancer Institute, 2017.

# Risk Factors for Colorectal Cancer

- Aging
- Personal history of CRC or adenomas
- High-fat, low-fiber diet
- Inflammatory bowel disease
- Family history of CRC
- Hereditary colon cancer syndromes

# Comprehensive molecular characterization of human colon and rectal cancer

The Cancer Genome Atlas Network\*

To characterize somatic alterations in colorectal carcinoma, we conducted a genome-scale analysis of 276 samples, analysing exome sequence, DNA copy number, promoter methylation and messenger RNA and microRNA expression. A subset of these samples (97) underwent low-depth-of-coverage whole-genome sequencing. In total, 16% of colorectal carcinomas were found to be hypermutated: three-quarters of these had the expected high microsatellite instability, usually with hypermethylation and *MLH1* silencing, and one-quarter had somatic mismatch-repair gene and polymerase  $\varepsilon$  (*POLE*) mutations. Excluding the hypermutated cancers, colon and rectum cancers were found to the expected *APC*, *TP53*, *SMAD4*, *PIK3CA* and *KRAS* mutations, we found frequent mutations in *ARID1A*, *SOX9* and *FAM123B*. Recurrent copy-number alterations include potentially drug-targetable amplifications of *ERBB2* and newly discovered amplification of *IGF2*. Recurrent chromosomal translocations include the fusion of *NAV2* and WNT pathway member *TCF7L1*. Integrative analyses suggest new markers for aggressive colorectal carcinoma and an important role for *MYC*-directed transcriptional activation and repression.

#### TCGA Network. Nature 487, 330-337 (2012)

#### Three Genetic pathways to colorectal carcinoma.



De Vita. Cancer principles & Practice of Oncology, 9<sup>th</sup> ed.

# Mismatch Repair (MMR) deficiency and Microsatellite Instability (MSI)



- MMR deficiency leads to MSI and high concordance rate noted
- Microsatellites are mono or dinucleotide repeats
- Single base pair insertion/deletion leads to instability : >1 (high), 1 (low)
- Right sided, poorly differentiated, lymphocyte infiltration, mucinous
- Better prognosis, lower rate of metastases

# Screening

- Familial CRC
- Diagnosis and Staging
- Treatment
  - Early stage surgery Intermediate stage - adjuvant chemotherapy Advanced stage
- Use of biomarkers in CRC: towards
   personalized medicine
- Drug Development at Montefiore Einstein

#### Figure. Screening for Colorectal Cancer: Clinical Summary

| Population     | Adults aged 50 to 75 y                                         | Adults aged 76 to 85 y                                                         |
|----------------|----------------------------------------------------------------|--------------------------------------------------------------------------------|
| Recommendation | Screen for colorectal cancer starting at age 50 y.<br>Grade: A | The decision to screen for colorectal cancer is an individual one.<br>Grade: C |

| Risk Assessment                             | For the vast majority of adults, the most important risk factor for colorectal cancer is older age. Other associated risk factors include family history of colorectal cancer, male sex, and black race.                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Screening Tests                             | There are numerous screening tests to detect early-stage colorectal cancer, including stool-based tests (gFOBT, FIT, and FIT-DNA), direct visualization tests (flexible sigmoidoscopy, alone or combined with FIT; colonoscopy; and CT colonography), and serology tests ( <i>SEPT9</i> DNA test). The USPSTF found no head-to-head studies demonstrating that any of these screening strategies are more effective than others, although they have varying levels of evidence supporting their effectiveness, as well as different strengths and limitations. |                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Starting and<br>Stopping Ages               | The USPSTF concluded that the evidence best supports a starting age of 50 y for the general population. The age at which the<br>balance of benefits and harms of colorectal cancer screening becomes less favorable varies based on a patient's life expectancy,<br>health status, comorbid conditions, and prior screening status. The USPSTF does not recommend routine screening for colorectal<br>cancer in adults 86 y and older.                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Treatment and<br>Interventions              | Treatment of early-stage colorectal cancer generally consists of local excision or simple polypectomy for tumors limited to the colonic mucosa or surgical resection (via laparoscopy or open approach) with anastomosis for larger, localized lesions.                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Balance of Benefits<br>and Harms            | The USPSTF concludes with high certainty that the net benefit of<br>screening for colorectal cancer is substantial.                                                                                                                                                                                                                                                                                                                                                                                                                                            | The USPSTF concludes with moderate certainty that the net<br>benefit of screening for colorectal cancer in adults aged 76 to 85 y<br>who have been previously screened is small. Adults who have<br>never been screened are more likely to benefit. Screening is most<br>appropriate for those healthy enough to undergo treatment and<br>those without comorbid conditions that significantly limit their life<br>expectancy. |  |  |
| Other Relevant<br>USPSTF<br>Recommendations | The USPSTF has made a recommendation on aspirin use for the p<br>in average-risk adults. This recommendation is available on the US                                                                                                                                                                                                                                                                                                                                                                                                                            | primary prevention of cardiovascular disease and colorectal cancer<br>SPSTF website ( <u>www.uspreventiveservicestaskforce.org</u> ).                                                                                                                                                                                                                                                                                          |  |  |

#### **USPSTF** website

### **Summary of Screening Options**

| Test          | Туре            | Involves      | Interval | Sensitivity | Specificity |
|---------------|-----------------|---------------|----------|-------------|-------------|
| Stool         | gFOBT           | Kit for blood | 1 yr     | 30-50%      | 80%         |
|               | FIT             | Kit for blood | 1 yr     | 65-70%      | 85%         |
|               | FIT DNA         | Kit for DNA   | 1-3 yr   | More        | Less        |
|               |                 | 1             |          |             |             |
| Direct        | Colonoscopy     | Scope         | 10 yr    | 95-98%      | 90%         |
| Visualization | Flex sig        | Scope         | 5 yr     | Lower       | ??          |
|               | CT colonography | CT imaging    | 5 yr     | 84%         | 90%         |
|               |                 |               |          |             |             |
| Combination   | Flex sig, FIT   |               | 10/1 yr  | < c-scope   | ??          |

\*Guaiac fecal occult blood test \*Fecal immunochemical test

> USPSTF, JAMA 315: 2564, 2016 JNCCN 14:1033, 2016

- Screening
- Familial CRC
- Diagnosis and Staging
- Treatment
   Early stage surgery
   Intermediate stage adjuvant chemotherapy
   Advanced stage
- Use of biomarkers in CRC: towards
   personalized medicine
- Drug Development for CRC at MECC





Germline APC mutation Autosomal Dominant Penetrance 100% > 100 adenomas Rectosigmoid dominant Risk of extracolonic tumors (upper GI, desmoid, osteoma, thyroid, brain, other) Screen at age 10-12

### **HNPCC**



Germline MMR mutation Autosomal Dominant Penetrance 60-80% Impressive Family history Proximal colon dominant Extracolonic cancers: (endometrium, ovary, stomach, urinary tract, small bowel, bile ducts, sebaceous skin tumors) Screen at age 20-25

### Proposed algorithm for systematic evaluation for Lynch syndrome in patients with colorectal cancer



Fay Kastrinos, and Sapna Syngal JCO 2012;30:1024-1027

# Cancer Screening for Lynch affected patients

#### Table 10. Guidelines for screening at-risk or affected persons with Lynch syndrome

| Intervention                                    | Recommendation                                                                                                                                                                                                                                               | Strength of recommendation                                                                                                                                                          |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Colonoscopy                                     | Every 1–2 y beginning at age 20–25 y or 2–5 y younger than youngest<br>age at diagnosis of CRC in<br>family if diagnosis before age 25 y<br>Considerations: Start at age 30 y in MSH6 and 35 in PMS2 families<br>Annual colonoscopy in MMR mutation carriers | Strong recommendation:<br>Level of evidence (III): well-designed and conducted<br>cohort or case-controlled studies from more than 1<br>group with cancer<br>GRADE rating: moderate |
| Pelvic examination with<br>endometrial sampling | Annually beginning at age 30–35 y                                                                                                                                                                                                                            | Offer to patient:<br>Level of evidence (V): expert consensus<br>GRADE rating: low                                                                                                   |
| Transvaginal ultrasound                         | Annually beginning at age 30–35 y                                                                                                                                                                                                                            | Offer to patient:<br>Level of evidence (V): expert consensus<br>GRADE rating: low                                                                                                   |
| EGD with biopsy of the<br>gastric antrum        | Beginning at age 30–35 y and subsequent surveillance every 2–3 y<br>can be considered based on patient risk factors                                                                                                                                          | Offer to patient:<br>Level of evidence (V): expert consensus<br>GRADE rating: low                                                                                                   |
| Urinalysis                                      | Annually beginning at age 30–35 y                                                                                                                                                                                                                            | Consideration:<br>Level of evidence (V): expert consensus<br>GRADE rating: low                                                                                                      |
|                                                 |                                                                                                                                                                                                                                                              |                                                                                                                                                                                     |

EGD, esophagogastroduodenoscopy; GRADE, Grades of Recommendation, Assessment, Development, and Evaluation.

# Task Force. Am J Gastro 109:1159, 2014

# Management of Lynch affected patients

#### Table 12. Guidelines for management of affected persons with Lynch syndrome

| Intervention                                        | Recommendation                                                                                                                                                             | Strength of recommendation                                                                                                                                              |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Colectomy with ileorectal<br>anastomosis            | Patients with colon cancer or colorectal neoplasia not<br>removable by endoscopy<br>Consideration for less extensive surgery in patients<br>older than age 60–65 y         | Strong recommendation: Level of evidence (III): well-designed and conducted cohort or case-controlled studies from more than 1 group with cancer GRADE rating: moderate |
| Hysterectomy and bilateral<br>salpingo-oophorectomy | After childbearing or age 40 y                                                                                                                                             | Recommendation: Level of evidence (IV): observation study<br>GRADE rating: moderate                                                                                     |
| Daily aspirin                                       | Treatment of an individual patient with aspirin is a<br>consideration after discussion of patient-specific risks,<br>benefits, and uncertainties of treatment is conducted | Consideration: Level of evidence (I): randomized controlled study<br>GRADE rating: moderate                                                                             |

# Task Force. Am J Gastro 109:1159, 2014

- Screening
- Familial CRC
- Diagnosis and Staging
- Treatment
   Early stage surgery
   Intermediate stage adjuvant chemotherapy
   Advanced stage
- Use of biomarkers in CRC: towards
   personalized medicine
- Drug Development for CRC at MECC

# **Diagnosis of CRC**

"Tissue is the issue"

"No meat, no treat"

Core biopsy on endoscopy or metastatic site – lung or liver or LN

**FNA from metastatic site** 

## Staging

### T - The extent of invasion of the intestinal wall

- T0 no evidence of tumor
- Tis- cancer in situ (intraepithelial or lamina propria)
- T1 invades submucosa
- T2 invades muscularis propria
- T3 invades through the muscularis propria into pericolorectal tissues
- T4 invasion completely through the wall of the colon

T4a – penetrates visceral peritoneum

T4b - invades or adherent to surrounding organs

### **N** - the extent of lymphatic node involvement

- N0 no lymph nodes involved
- N1 1-3 lymph nodes involved (N1a 1 LN, N1b 2-3 LN, N1c mesentric tumor deposits)
- N2  $\geq$  4 lymph nodes involved (N2a 4-6 LN, N2b  $\geq$  7 LN)

### **M** - the extent of metastases

M0 - no metastasis

M1 – metastases present (M1a: single organ,;M1b: <u>></u>2 organs; T1c: peritoneal surface

# Staging and Survival (AJCC v 7)

| Stage | TNM         | 5 year<br>survival |
|-------|-------------|--------------------|
| 1     | T1,2 N0 M0  | 97%                |
| lla   | T3 N0 M0    | 88%                |
| llb   | T4a N0 M0   | 80%                |
| llc   | T4b N0 M0   | <b>58%</b>         |
| Illa  | T1-2 N1 M0  | 85%                |
| lllb  | T3 N2 M0    | 65%                |
| llic  | T4 or N2 M0 | 30%                |
|       | T4b N1-2    |                    |
| IV    | T1-4 N0-2M1 | 8%                 |

# Staging and Survival (AJCC v 7)

| Stage | TNM         | 5 year<br>survival |
|-------|-------------|--------------------|
| 1     | T1,2 N0 M0  | 97%                |
| lla   | T3 N0 M0    | <mark>88%</mark>   |
| llb   | T4a N0 M0   | 80%                |
| llc   | T4b N0 M0   | <b>58%</b>         |
| Illa  | T1-2 N1 M0  | 85%                |
| IIIb  | T3 N2 M0    | 65%                |
| llic  | T4 or N2 M0 | 30%                |
|       | T4b N1-2    |                    |
| IV    | T1-4 N0-2M1 | 8%                 |

- Screening
- Familial CRC
- Diagnosis and Staging
- Treatment

Early stage - surgery Intermediate stage - adjuvant chemotherapy Advanced stage

- Use of biomarkers in CRC: towards
   personalized medicine
- Drug Development for CRC at MECC

# TREATMENT DEPENDS ON STAGE

- STAGE I COLON AND RECTUM SURGERY ONLY
- STAGE II COLON– SURGERY WITH/WITHOUT CHEMOTHERAPY
- STAGE II RECTAL- SURGERY, RADIATION AND CHEMOTHERAPY
- STAGE III COLON– SURGERY WITH CHEMOTHERAPY
- STAGE III RECTAL SURGERY, RADIATION AND CHEMOTHERAPY
- STAGE IV COLON AND RECTUM CHEMOTHERAPY ONLY

# **Principles of Surgery**

- Minimally invasive procedure is an option (laparoscopic colectomy)
- All involved lymph nodes to be removed
- Sample at least 12 nodes for complete staging (if < 12, consider therapy as stage III)</li>
- For metastesectomy, of liver or lung, intent should be complete removal, debulking is of no benefit (including removal of primary tumor)

# **Principles of Adjuvant Therapy**

- Goal of adjuvant therapy is cure (delaying relapse is less important)
- Stage II colon cancer prefer single agent therapy with 5-FU or capecitabine
- Stage III colon cancer add oxaliplatin
- Stage II and III rectal cancer add radiation

# Chemotherapy/Drug Names (US FDA approved)

- 5-FU (5-Fluorouracil) cytotoxic, stage II-IV CRC
- Oxaliplatin (Eloxatin) cytotoxic, stage III-IV CRC
- Irinotecan (Camptosar) cytotoxic, stage IV CRC
- Capecitabine (Xeloda) 5-FU pro drug, cytotoxic, stage II-IV CRC
- Bevacizumab (Avastin) mAb VEGF, stage IV CRC
- Cetuximab (Erbitux) mAb EGFR, stage IV Ras WT CRC
- Panitumumab (Vectibix) mAb EGFR, stage IV Ras WT CRC
- Aflibercept (Zaltrap) fusion protein VEGF, stage IV CRC
- Ramucirumab (Cyramza) mAb VEGF, stage IV CRC
- Regorafenib (Stivarga) TKI VEGF, stage IV CRC
- Trifluridine and tipiracil (Lonsurf) cytotoxic, stage IV CRC
- Pembrolizumab (Keytruda) anti PD-1, MSI high tumors/ stage IV CRC
- Nivolumab (Opdivo) anti PD-1, MSI high stage IV CRC

### Overall Survival for First-line Combination Regimens



- Screening
- Familial CRC
- Diagnosis and Staging
- Treatment

Early stage - surgery Intermediate stage - adjuvant chemotherapy Advanced stage

- Use of biomarkers in CRC: towards personalized medicine
- Drug Development for CRC at MECC

# Why personalized medicine?

 Because everyone is talking about it!? and it is the "in" thing??

# Why personalized medicine?

- Because everyone is talking about it!? and it is the "in" thing?? – ABSOLUTELY NOT!
- · "First do no harm"
- It is the right approach to patients
- Limit toxicity from intervention
- Reduce health care costs

(a staggering \$ 3.4 trillion in 2016)

### The EGF-MAPK-PI3K Pathway and anti EGFR agents



Cetuximab is IgG1, chimeric Panitumumab is IgG3, human

Tumors with Kras and Nras mutations do not respond to these drugs



Typical anti EGFR induced skin rash

- Exclusivity for EGFR
- Prevent binding of EGF or TGF to EGFR and prevents tyrosine kinase activation

# **MSI as prognostic/predictive marker**



#### Untreated patients MSI better outcome

#### Treated patients 5-FU - worse outcome

Sargent DJ, J Clin Oncol 28:3219-26, 2010

# **MSI as prognostic/predictive marker**



#### Untreated patients MSI better outcome

Treated patients 5-FU - worse outcome

Remember the Hippocratic oath: First do no harm !!

Sargent DJ, J Clin Oncol 28:3219-26, 2010

# The dawn of immunotherapy: Programmed Death Pathway





# Immunotherapy in CRC Pembrolizumab is an anti PD1

mAb

#### Le NEJM 372:2509, 2015

# Reovirus growth in a Ras activated cell



#### K-ras WT cell

#### K-ras mutant cell

**Courtesy: Oncolytics** 

PHASE I STUDIES

#### Intravenous administration of Reolysin<sup>®</sup>, a live replication competent RNA virus is safe in patients with advanced solid tumors

Radharani Gollamudi • Mohammad H. Ghalib • Kavita K. Desai • Imran Chaudhary • Benny Wong • Mark Einstein • Matthew Coffey • George M. Gill • Karl Mettinger • John M. Mariadason • Sridhar Mani • Sanjay Goel

Received: 4 May 2009 / Accepted: 8 June 2009 © Springer Science + Business Media, LLC 2009

Summary *Background* Reolysin<sup>®</sup> is reovirus serotype 3-Dearing strain, a double-stranded replication-competent RNA non-enveloped icosahedral virus. It induces cytopathic and anti-cancer effects in cells with an activated ras pathway due to inhibition of the dsRNA-activated protein kinase. *Methods* This was a single center dose escalation trial of Reolysin administered intravenously every 4 weeks in doses ranging from  $1 \times 10^8$  to  $3 \times 10^{10}$  tissue culture infective dose (TCID)<sub>50</sub>. Serum for neutralizing antibody, and serum, stool, saliva, and urine for viral shedding were

Presented in part at the 36th Annual Meeting of the American Society of Clinical Oncology, Chicago, 2007.

collected. Tumor samples were analyzed for activating mutations in the ras and braf oncogenes. *Results* Eighteen patients received 27 doses of Reolysin in 6 dose cohorts accomplishing a 300 fold dose escalation without a protocol-defined dose limiting toxicity. Drug related grade 2 toxicities included fatigue and fever (1 patient each). All patients developed neutralizing antibody during the course of the study. Viral shedding was observed in 6 patients. One patient with anthracycline and taxane refractory breast cancer experienced a partial response (PR) and her tumor had a ras G12A mutation. Biopsy from her chest wall mass showed evidence of necrosis and viral replication by electron microscopy. Overall clinical benefit (1 PR + 7 stable disease) rate was 45%, and appeared higher in patients with viral shedding (67%) than those without (33%). *Conclusion* 

#### Gollamudi, Invest New Drugs 28:641-9, 2010

Radharani Gollamudi and Mohammad H. Ghalib contributed equally to the paper.



Fig. 2 Biopsy taken from a chest wall mass of a 60 year old woman with anthracycline and taxane pre treated breast cancer. The biopsy was taken 93 days after the first dose of Reolysin, (48 h after the third dose). Panel 2a: Pharmacodynamic Effect: Hematoxylin and Eosin stain of the biopsy showing extensive necrosis (also seen in 2b) of the

tumor suggestive of anti-tumor activity. Panel 2b: Virokinetics: Electron Microscopy of the same biopsy specimen showing viral replication and remnant capsids/ghosts, typical of findings after prolonged interval between viral exposure and tissue collection, and with evidence of tissue necrosis

#### **Oncolytic reovirus preferentially induces apoptosis in KRAS mutant colorectal cancer cells, and synergizes with irinotecan**

Radhashree Maitra<sup>1</sup>, Raviraja Seetharam<sup>1</sup>, Lydia Tesfa<sup>2</sup>, Titto A.Augustine<sup>2</sup>, Lidija Klampfer<sup>1,2,5</sup>, Matthew C. Coffey<sup>3</sup>, John M. Mariadason<sup>4</sup>, and Sanjay Goel<sup>1,2</sup>



Maitra et al, Oncotarget, 2014

Time to and duration of response as assessed per RECIST v1.1



Time to response = time to BEST overall response Duration of response = time from BEST overall response till PD or last tumor measurement (withdrawal of consent, off study)



#### Dose Cohorts

| Dose Level | Reovirus                                | Irinotecan | # patients | Prior FOLFIRI | Bevacizumab | DLT |
|------------|-----------------------------------------|------------|------------|---------------|-------------|-----|
|            |                                         |            |            |               |             |     |
| 1          | 1 X 10 <sup>10</sup> TCID <sub>50</sub> | 150 mg/m2  | 3          | Yes           | No          | 0   |
| 2          | 3 X 10 <sup>10</sup> TCID <sub>50</sub> | 150 mg/m2  | 12         | Yes           | No          | 0   |
| 3          | 3 X 10 <sup>10</sup> TCID <sub>50</sub> | 180 mg/m2  | 6          | Yes           | No          | 2** |
| 2 (new)    | 3 X 10 <sup>10</sup> TCID <sub>50</sub> | 150 mg/m2  | 7          | No            | Yes         | 0   |
| 3 (new)    | 3 X 10 <sup>10</sup> TCID <sub>50</sub> | 180 mg/m2  | 8          | No            | Yes         | 0   |

**DLT=dose limited toxicity** 

\*\* = DLT was grade 4 thrombocytopenia in a heavily pretreated patient (incl FOLFIRI)

\*\*= DLT was urosepsis in a patient with prior FOLFIRI treatment

# Acknowledgements

Mentors

- Sridhar Mani, MD
- John Mariadason, PhD
- Roman Perez-Soler, MD

the bedside

- Imran Chaudhary, MBBS
- Mohammad Ghalib, MBBS
- Umang Shah, MD
- Umang Swami, MD

the bench

- Titto Augustine, PhD
- Radhashree Maitra, PhD
- Raviraja Seetharam, PhD

## ·\$\$\$ - the real stuff!!





### Patients who made this possible